首页> 外文OA文献 >Cutting tool tracking and recognition based on infrared and visual imaging systems using principal component analysis (PCA) and discrete wavelet transform (DWT) combined with neural networks
【2h】

Cutting tool tracking and recognition based on infrared and visual imaging systems using principal component analysis (PCA) and discrete wavelet transform (DWT) combined with neural networks

机译:基于红外和视觉成像系统的刀具跟踪和识别,结合了主网络分析(PCA)和离散小波变换(DWT)与神经网络

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The implementation of computerised condition monitoring systems for the detection cutting tools’ correct installation and fault diagnosis is of a high importance in modern manufacturing industries. The primary function of a condition monitoring system is to check the existence of the tool before starting any machining process and ensure its health during operation. The aim of this study is to assess the detection of the existence of the tool in the spindle and its health (i.e. normal or broken) using \udinfrared and vision systems as a non-contact methodology. The application of Principal Component Analysis (PCA) and Discrete Wavelet Transform (DWT) combined with neural networks are investigated using both types of data in order to establish an effective and reliable novel software program for tool tracking and health recognition. Infrared and visual cameras are used to locate and track the cutting tool during the machining process using a suitable analysis and image processing algorithms. The capabilities of PCA and Discrete Wavelet Transform (DWT) combined with neural networks are investigated in recognising the tool’s condition by comparing the characteristics of the tool to those of known conditions in the training set. The experimental results have shown high performance when using the infrared data in comparison to visual images for the selected image and signal processing algorithms.
机译:在现代制造业中,为检测切削刀具的正确安装和故障诊断实施计算机状态监测系统非常重要。状态监视系统的主要功能是在开始任何加工过程之前检查刀具是否存在,并确保其在运行过程中的健康。这项研究的目的是使用\\\\\\\\\\\\\\\\\\\\\\\\\\-\-\-\-\-\-红外系统和非接触式方法,评估对刀具在主轴中的存在及其健康(即正常或损坏)的检测。利用这两种类型的数据,对主成分分析(PCA)和离散小波变换(DWT)与神经网络相结合的应用进行了研究,以建立有效且可靠的新型工具跟踪和健康识别软件程序。在加工过程中,使用合适的分析和图像处理算法,使用红外和可见光相机定位和跟踪切削刀具。通过比较工具的特征与训练集中已知条件的特征,研究了PCA和离散小波变换(DWT)与神经网络相结合的功能,以识别工具的条件。与所选图像和信号处理算法的可见图像相比,使用红外数据时,实验结果显示出高性能。

著录项

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号